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“y SUMMARY

E. The effects of heat sources and frictional heating on the lsminar
- de~elmed _el flOW s~ject to a body force between two paral-
lel plates oriented in the direction of the body force are analyzed.
Solutions are obtained for combined forced- and natural-convection flows
for the cases in which the wall temperature variations are hear and
(1) the wall.temperatmes are specified, (2) the walls are both insu-
lated, and (3) the net mass flow in the channel is zero. These solu-

U’ tions depend on the RayleQh nmber which was preciously found to be
the factor determining the stabili.~ and type of flow for horizontal
and vertical layers of fluids heated from below but without heat sources
or frictional heating. Similar stability characteristics are displayed
in the present problem, and the heat sources affect the flows only in a
quantitative manner.

When the effects of frictional heating are considered, two distinct
solutions me obtained for each set of parametric values. solutions
neglecting frictional heating correspond to a different e~ct solution
for values of the Rayleigh number smaller and larger thsm the critical.
The related approximate and exact solutions are essentially coincident
when the frictional-heatingparameter is small but differ for unit order
values of this parameter. !15eapproximate solutions (i.e., those neg-
lecting fictional heating) are shown to be always invalid for Rayleigh
numbers nesx critical.

INTRODUCTION

Considerable theoretical work (refs. 1 to 5} has recent~ been tine
on problems dealing with internal natural-convection flows because of
the many new practical applications of this phenomenon. The heat-
transfer results of reference 5 are ~erimentally verifiedin reference

w 6. All this work is concerned with flows in vertical enclosures.

8
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One of the many interesting aspects of the natural-convectionproc-
ess, which was originally studied theoretically by Rayleigh in 1916
(ref. 7] for horizontal rather than vertical layers of fluid, is the in-
stability of the flow associated with heating a fluid at rest &cm be-
low. When a stationary fluid has some layer with a density greater than
others lying below it, its equilibrium becomes unstable in the sense that
even a small disturbance may result in a completely altered regime.
B&ard (ref. 8) and others had previously shown experimentally that such
a configuration leads to a cellular type of flow. Niuneroustheoretical
and experimental investigationshave been perfozmed to substantiate,
clarify, and exted the early findings, but these works were restricted
to horizontal layers of fluid. These studies, which are briefly summa-
rized in reference 9, were essentially of the stability type in which
eigen relations of the physical and cell-shape parameters were deter-
mined for neutral stability, and the details of the flow were usually
not investigated further.

The results of this work on horizontal layers indicate that the
flow regimes depend on a dimensionless parameter sometimes referred
to as the Rayleigh number, which is the product of the Fmndtl and
Grashof numbers. It has been demonstrated experimentally that there
are essentially two different kminar types of flow: (1) a columnar “w
type (ref. 10), occurri

Y

after a relatively low value of the Rayleigh
number is attained, and 2) the cellular type ‘observed first), occur-

4ring for larger values of the Rayleigh number approximately 1700 for . .—.A
two horizontal pardl.elplates). --- .

...

In”reference 5, it was pointed out that”heating from belov might be
ect the stability of vertical as well.as horizontal lay-

spite the differences between the two configurations. As a matter
of fact, heating ftrombelow in vertical enclosures is often actually en-
countered; a discussion of such a configuration in an atomic -powerunit
is presented in reference 11. Configurations of this type can also be
found in maw other fields besides that of atomic power; for exemple,
this phenomenon can also be found in conjunction tith the cooling of
turbine blades by natural convection. (The writer is unaware of any
previous presentation of this connection.) Accordingly, the problem
treated in reference 5 (namely, the fidly developed flow with temper-
ature increasing linearly upward in a vertical channel) was reconsid-
ered in reference 12, with the modification that the heating was Emn
below; that is, the temperature was specified to decrease linearly
upward.

In reference 12, it was found that the stability characteristics
and the critical values of the Rayleigh number for the vertical.fluid
layers were similar to those for horizontal layers. Representative
velocity and temperature distributions for various sets of boundary
conditions were determined from explicit expressions in reference 12
neglecting frictional heating. It was shown that, in certain ranges

4“
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of the parametric values, the flow and heat transfer associated with
heating frcm below are appreciably different from the corresponding
quantities for the identical configuration in which heating 3.snot
from below.

The analysis of reference 12 is extended herein to include the ef-
fects of uniform internal heat sources in the fluid snd of frictional
heating. The importance of frictional heating in the natural-convection
phenomenon was first discussed in reference 1 and later in references 5
and 13. The solutions obtained with frictional heating are exact, so
that the ass~tion of the negligibility of frictional heating in refer-
ence 12 can be checked.

ANKLYSIS

Basic Equations

The fully developed laminar flow of viscous fluids subject to a
bdy force between two plane vertical parallel surfaces open at both
ends (see fig. 1) is considered herein, as in references 1 and 5.
(More generally, the surfaces could be taken to be oriented in the &L-
rection parallel to any generating body force.} b contradistinction
to the work in references 1 and 5, the fluid here is heated from below,
so that the axial (vertical} temperature gradient is specified as nega-
tive. It is further assmed that the physical properties of the fluids
are constants, except that the essential influences of density changes
on the flow are taken into account insofar as they modim the effects
of the body forces. This last assumption is usuaJly employed in prob-
lems of this nature,.and its justification is discussed in references
1 and 14.

Under the conditions stated (which are essentially those for
Poiseuille flows together with the specific thermal conditions], the
temperature can be expressed as the sum of a linear function of the
vertical coordinate and arbitrary function of the horizontal coordinate:

T*=AX+ T(Y) (1)

Further, the continuity equation is identically satisfied, and the mo-
mentum and energy equations in dimensionless form are

u“ -I-T = -CK (2)

T ‘t +Rau+(u’)2+aK=0 (3)

(All synbols are defined in the appendix.} The primes denote &ifferen-
tiation with respect to the dimensionless horizontal coordinate y. The
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terms in equation (2)(fMm left to right, respectively) denote the vi.s-
#

COUS, buoyancy, and axial-pressure forces, and the terms in equation (3)
denote the conduction, convection, frictional heating, and heat sources.
The details of.the development of these equations are essentially pre-
sented in reference 5, the only modification in the present work being
that the longitudinal (vertical) temperature gradient &@/aX= A is
taken as negative. Note that the Rayleigh &d &ashof numbers are modi-
fied herein in that the characteristic temperature is Ad rather than a
temperature difference as is conventional.

I

The constant C which appears as a
I

f!))

axameter in the problem merely
specifies the temperature level (see eq. 2 and is defined by (see
ref. 5}

c=+
, %YK(~+’#J

(4)

This parameter must in some way be related to the physics of the prob-
lem. From equation (4) it cqn be seen that C could be determined from
the longitudinal pressure gradient; that is, C is essentially connected
with the end conditions to which the channel is subJect. The parameter -d
C can also be related to the end conditions by the mass flow in the
channel, which remains invariant over the entire channel length. Such
a relation will be developed subsequently. The solutions of eqwtions d
(2) and (3), together with appropri.ateboundary conditions, till,
through the parameter C, qpply to both natural-convectionand ccmbined
natural- and forced-convectionflows. The forced-convectionpressure
gradient merely alters the magnitude of C.

The system of equations (2) and (3) can, by eliminating ‘c,be
written as a single fourth-order nonlinear ordinary differential
equation:

Uiv

Equations of the same form

-Rau-(u’p-a. .=o (5)

as in reference 5 are obtained by letting

v= &(Rau+aK) (61

~=2y-1 (7)

R=% (8)
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.

where equations,
v(q),

5

(7)ismer6~ forconvetience. Equation (5) becanes, for

#v (V’)z - (-J-Rv - ~

Boundary Conditions

(9)

The present problem will be considered for two different sets of
thezmal-boundary conditions at the channel surfaces, namely, (1) that
the wall temperatures are specified and (2) that both walls are insu-
lated. Another case, which was essentially a ccsnbinationof the above
conditions, was treated in reference 12; but, since no basically new
results were indicated, this case is not discussed herein.

For both sets of thermal conditions, the no-slip condition of vis-
cous fluids must be satisfied; that is,

V(-1) = v(l) = h (lo)

-f where

&
(IL)

Specified side-wall temperatures. - For the first set of thermal
conditions the side-wall temperatures are specified. The temperature
varies linearly along the walA (equal slopes on both walls), but the
walls may each be at different temperatures.

[1
Thus, equation 1 im-

plies uniform heat flux across each surface. When equations 2 , (6)i
and (7) are used, this condition can be written as

V“(-l) = @r (12)

v“(l) = nJyF (lzi)

where

Ral/2CKJ=- 64 (14)

and

.

.

(15)
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where n is essentially a measure of the difference between the two
wall temperatures. 8*–

Both side walls insulated. - In order to simulate more closely the
conditions used in the study of the horizontal layers where the side
walls were taken to be insulated surfaces of symmetry in the fluid, the
second set of thermal conditions chosen herein is that both side walls
are insulated; that is,

or

The
heating.
km then

together

(amqqo,vl = o

1~ll!(-1) SV1lJ(l) =0

Solutions

nonlinear term in eqpation (9) is associated with frictional
If the effects of frictional heating
consists in solving the equation

.

W -RvO=O

with the proper boundary conditions.

p
In
to

(16)

are neglected, the prob-

(17)

For no internal heat
sources (CG= 0), this-probla is-solved in reference 12. . —
sets of boundary conditions. The solutions of equation
fied by the subscript zero, are hereinafter referred to
imate solutions. The effects of a uniform distribution
(a~O) are determined herein.

for three
(17), identi-
as the approx-
of heat sources

In the present paper the effects of frictional heating are deter-
mined from a Mrect solution of the complete equation (5), by means of
a forward integration te@nique on a high-speed computing machine (Card-
l?rogrammedCalculator).1-

The effects of frictional heating are clearly discernible by com-
paring the solutions of the ccmplete and the approx&nate equations (eqs.
{5] and (17), respectively). The solution of equation (17) also repre-
sents an extension (including heat sources) of the work in reference 12.
The general solution of equation (17) is of the form

1/4q + C4 sinhR1/4q + C3 coshR1/4q + C2 sinRvo = Cl cos R l/4q

%he effects of frictional heating could also be determined by an
iteration procedure as described in reference 5, however, this procedure
till not be used herein.

—

-.

.

.

b“
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For each given set of boundary conditions, the solutions are presented
in the succeeding sections in terms of VO, and the corresponding tem-

perature differences T can be obtained by use of equation (2).

8pecified side-wdl temperatures.’- The solution of equation (17)
subject to the boundary conditions (eqs. (10), (12), and (13)) is

04
ul

$
where

(18)

*) (19)

*)
(20)

+)
(21)

*’
The solution given by equation (18) is a function of the parameter

c. b order to relate this solution to a given physical problem, C can
either be determined f&om the channel pressure gradient through equation
(4) or &cm the dimensionless mass flow through the expression

1

J

M= Uow (22)
o

Equation (22] is particularly convenient in the case of no net mass flow
through the channel, for then C can be directly related to the pars.m-
eters a, n, and Ra.

Examination of the solution neglecting frictional heating (eqs.
(18) to (21)) shows that there are critical values of the Rayleigh
number Ra for which the solutions become infinite. These values,
nsmely, Rak = (luc)4,where k denotes integers, obtained herein con-
sidering heat sources are identical with those given in reference 12
for no heat sources. It is significant that these critical values of
the Rayleigh number tien k = 1 and 2 (Ral=97.41 and Ra2=1558.55)
correlate closely tith the critical values found for horizontal layers
heated from below (see ref. 9). Further discussion of all the solutions
and theti physical simplications is given in the neti section.“
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Both side walls”insulated. - The solution
problem specified by equations (17), (10), and

NAC!A TN 3458

of the boundary-value
(16) AS

in R1/4cosh R1/4 - Sl.nhR1/4COS R1/4qV. =
Sin R1/4cosh R1/4 - sifi R1/4cos R1/4

The critical values of Ra for equation (23) are those which

tan @/4. tanh R1/4 or Rak =[$k ++)~4. For k= 1, Ral

(23)

satisw

~ 3803.22.

Note that the boundary-value problem as stated for this case (both
walls insulated) by equations (5), (6), (10), and (16) defines T to
within an arbitrary constant. Therefore, in order that T vanish at
the wall (y= 0), which it must by its definition, C must be so speci-
fied as to accomplish this. Hence, for this case, T is determined
from (see eq. (2)) T== u’’(O)- u“.

Solutions for special case simulating an enclosed channel. - In or-
der to simulate,a completely enclosed channel, that is, one in which the
ends are closed, the net mass flow as given by equation (22) can be
specified as zero. For the case of linear side-wall temperatures, no
net mass flow will be obtained if .-

W=” tanh R1/4 + tan R1/4 - 2R1/4
2 ~ tanhR1/~-- tanR1/4

(24)

For the case Werein both walls are insulated, the condition of no
net mass flow can be obtained only if there is no heat due to heat
sources (a = O). The situation for a = O is as described in reference
12; that is, no flow except for certain specific values of Ra (those

1/4coshRa1/4= 1 or Rak&satisfying cos Ra
[(k ‘%14

as given in

ref. 12).

MECHANICAL

Equation (17), obtained &an the

ANALOGY

mathematical formulation of the
problem treated herein, is identical with tkt describing the vibra-
tions of uniform beams or of rotating shafts (see ref. 1.5). The case
wherein both walls are insulated is analogous to the vibration problem
if the ends of the shaft are fixed with no shear. The critical values
of the Rayleigh number correspond t.othe critical or whirling speeds
of the shaft.

J

i, -

—

—

.
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If the shaft has initial deflections or
* ends, the rotating shaft becomes dynamically

9

bending mcments at the
unstable and the solu-

tions become infi~te at the critical speeds. This situation has its
counterpart in the present problem wherein the side-wall temperatures
are specified.

RESULTS AND DISCUSSION

g
The discussion of the results is divided into two main sections

2 according to the thermal boundary conditions. The main sections are
further subdividedby first neglecting the frictional heating effects
and then including them in order to demonstrate clearly the effects
of heat sources and of frictional heating.

y
g

The primary effect of heating from below, nemely, the instability
of the flow, is demonstrated by cmparing the present results with those
for the stable case (A > 0) reported in reference 5. In this regard, it
should be noted that, since CK, cdfjCA, and K/A are all independent
of A, the problem treated herein (for A < 0) differs frcm that in ref-
erence 5 (for A > 0) only in the sign of the convection term. There-

d“ fore, in order to comparethe two cases properly, the boundary condi-
tions must be identical in the two problems. Choosing C! with opposite
signs in the two problems makes them identical. Since C = -1 for the
present calculations, the corresponding cases for A > 0 are computed
with

ical

the use of reference 5 for C = 1.
—

The results are all presented in dimensionless form, with the plxys-
quantities related to the dimensionless ones by

u= r*U
PrK

,g=IA.&
K

Y=ti

Linear Side-Wall Temperatures

No frictional heati~. - ti order to investigate

(25)

(26)

(27)

closely the flow
and heat transfer, includiu the effects of heat sources for values of
Ra different fro& the crit;cal, calctitions of the velocity and tem-
perature Ustributions were made from the approximate solutions forb
a= 10, K = 10, and the two side walls either at the same temperature
(n= 1) or at different temperatures (n= O, for convenience) and

.
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Ra = 10, 81, 100, 1000, smd 1600, so that the critical values of the
Rayleigh number are straddled. The calculations of reference 12 for no “L●
heat sources (a = O) were also etiended herein over the larger range of
Rayleigh number values. All these computations are presented in figures
2 and 3 for the symmetric case (n = 1) andin figures 4 and 5 for the
asymmetric case (n = O) and are labeled with ~ and To to denote

that they are the solutions obtained neglecting frictional heating.

l?romthe solutions (eqs. (18) to (21)), it can be seen that the
only critical value of Ra for n = 1 in the range O < Ras 1600 ~

(for which the calculations were made) is Ra = fi4= 97.41. Com- N3

parison of the velocity profiles (fig. 2) for each fixed a and both
walls at the seinetemperature shows a different flow direction on ei-
ther side of this critical point, the distributions remaining essen-
tially the ssme shape except for boundary-layer effects as Ra is
further increased to 1600. This behavior can be clearly observed in
figure 6, where the velocity extrema are presented as functions of
Ra for u- O. The temperature distributions (see fig. 3) for a = O
are of opposite curvature on either side of Ra = 97.41.;but for a = 10
there is no such change, but merely a gradual decrease of the maximum
values followed by an increase for large Rayleigh numbers.

For the walls at different temperatures (n = O), the two critical
values of Ra in the range up to 1600 are ti4= 97.41 and

[

2fi)4= 1558.55. For this case, it canbe seen fkom figures 4(a) and
b) that again the velocity changes direct<on across Ra = 97.41 for
u= O and a=10. For values of Ra > 100, the flow is no longer
entirely in one direction but is in opposite directions in adJacent
sections of the channel (see fig. 4(c)].

tions are ~e%~~d=

Beyond the second critical
point, Ra 1558.55, the flow directions in the a&jacent sec-

. The temperature distributions (fig. 5) are also
appreciably altered in passing the uitical values of the Rayleigh
number.

The effects of heat sources in the fluid can be determinedly can-
paring the curves for a = O with those for a= 10 in figures 2 to 5.
For Ra = 10 (figs. 2(a) and 4(a)), the addition of the heat (a= 10)
for these computations) causes the flow direction to be reversed essen-
tially (with different magnitudes). Near the first critical point, the
heat sources greatly reduce the velocity magnitudes. The addition of
heat sources, of course, alters the temperature distributions and,
hence, alters the heat transfer greatly.

In order to study the effect of heating from below, calculations
made for the stable case (A > 0) from reference 5 are superposed on
figures 2 to 5. The boundary conditions are specified to be identical
for both problems, so that the two cases correspond except for the

2

8
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heating from below. Comparison of the velocity and temperature profiles
shows that the heating frcm below changes the flow and heat-transfer dl-
rectionsand magnitudes in scme ranges of Ra values. Ih all’cases,
greater velocities result with heating fran below. Since, as has been
previously discussed, the heat sources can also change the flow and
heat-transfer magnitudes and directions from the a = O case, the ef-
fect of the heat sources in this comparison is merely to shift seineof
the ranges of Ra values for which the stable and unstable flows and
heat transfers are unidirectional.

Representative velocity and temperature profiles for the case simu-
lating a fully enclosed region (i.e., zero net mass flow) are presented
in figures 7 and 8 for Rayleigh numbers of 10, 1~, and 1600 and for
heat-source parameters of O and 10. For small I@ (see figs. 7(a) and
8(a)), the velocity profile with no heat sources (a = O) is antisymmet-
ric and the temperature profile is essentially linear. For heat sources
in the fluid (a = 10), the velocity profile is symmetric about the chan-
nel ads and the temperature profile shows the effects of the increased
convection by its almost parabolic shape. For large Rayleigh numbers
(figs. 7(c) and 8(c)), both the velocity and t~erature profiles for
both a = O and a= 10 axe antisyrmnetric,but for each different a
the directions are opposite. Fwther, since Ra = 1558.55 is the first
critical value due to heating tiom below fo~this case, the direction
change from that for small Ra is also clearly evident. Note that the
parameter n for no net mass flow and fixed C changes with a, and
the appropriate values are indicated in the figures.

Frictional heating. - In reference 5, it was pointed out that, in
general, the effects of frictional heating could be important if the ra-
tio Km is of unit order or larger. Therefore, in order to see how
well the solutions neglecting frictional heating approximate the exact
solutions (eq. (5)), the complete equation including the effects of
frictional heating was solved for several cases by means of a Card-
Rogrsmmed Calculator. A forward integration technique similar to that
described in appendix B of reference 16 was employed. The results of
these calculations, denotedby u and T with no subscripts but with
superscripts to indicate the exact solutions, are presented in tables I
and II and also in figures 2(a) and (d), 3(a) and (d), 4(a) to (d), and
5(a) to (d). The significance of the superscripts will be discussed
subsequently.

The approximate solutions deviate scmewhat fkcanthe exact solutions
for K/k = 1 and essentially coincide with them for K/Ra << 1. How-
ever, near the critical values of Ra where the approximate solutions
become infinite, there are, of course, very great discrepancies between
the two solutions. Therefore, solutions were camputed from the exact
equations for values of Ra at and on either side of the critical.
These results are presented in figures 9 and 10 for the case of unequal
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wall temperatures (n = O]. It should be recalled that in reference 1
it was first pointed out that solutions of the exact equations (taking

.

into account the effects of frictional heating) were not unique. In
fact, two distinct solutions were found for each given set of parame-
ters up to a limiting set in the only problems which have been solved
exactly (see refs. 1 and 5). Beyond the certain limiting set of pa-
rametric values, no exact solutions could be found. The conjecture
is that this corresponds to a choking condition.

The two sets of erect solutions for several Rayleigh numbers (see 2
table 11) at and near the first critical value of Ra, shown in figures g

9and10for a= O and n= O, are denotedby u(l) and u(2). me
superscripts are used merely to identify a given exact solution, and
the (1) is used to denote that solution with the algebraically smaller
initial slope. Computations from the corresponding approximate SOIU- .
tions are included in figures 9 and 10. For the case of equal wall
temperatures (n = 1), the velocity extrema of both exact solutions are
superimposed on figure 6. It can be seen ft?omfigures 6, 9, and 10
that the flows cmputed from the approximate solutions correspond to
different exact solutions on either side of the first critical Ra.

Beyond the first critical Ra separate considerationmust be
given to the symmetric case (n= 1~ and the asymmetric case (n= O).
For n = 1, recall that Ra = X4 is the only critical Rayleigh,num-
ber (in the range computed, i.e., from Ra = 10 to 16(X))indicated by
the approximate solutions. Thus, for 97.41c Ra c 7890.I.3(the latter
being the second critical point (3YC)4for n = 1}, the a~roximate so-
lutions indicate flows of the same general character. However, the
exact solutions of the superscript {1) type for n = 1 appear to be
discontinuous at approximately Ra= 1579 (see fig. 6). The change
in flow type indicated thereby for the larger (than 97.41] Ra may
imply that the frictional heating delays (in aRayleigh number sense)
the instability. Note that the approximate solution always corresponds
to that exact solution with the lower velocities.

Exact (see table 11) and approximate solutions near the second
critical value of Ra ((2sr)4) for a = O and n = O are shown in
figures IL and 12. The two exact solutions are shown only for
Ra = 1758.55. Although the flow in adjacent sections of the channel
is in opposite directions, the qualitative effects are essentially
the same as those near the first critical Ra. No unusual behavior
of the exact solutions for n = O was found, but not as many of these
solutions for n = O were obtained as for n = 1.

Near the critical points there are appreciable quantitative and “
qualitative differences between the exact and approximate solutions,
so that the e=ct sohztioti or higher-order approximations should be
used there for reasonable accuracy. Therefore, it appears that near
the critical Ra the effects of frictional heating are very important.
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It has been pointed out (figs. 6 and 9 to M) that on either side
of the critical points the solutims neglecting frictional heating cor-
respond to different exact solutions but always those with the smaller
velocity etiremum. The question then arises: Since the exact solutions
do not displaya discontinuity (with Ra) at the values indicated.by the
approximate solutions, is the actual flow realJ.yof a different type on
either side of the critical Ra as is indicated by the linearized solu-
tions? Although a more general study of the present configuration would
be necessary (perhaps relaxing the condition of fully developed flow) to
answer this question conclusively, it seems reasonable that the actual
flow does in fact change character in accord with the linearized solu-
tions and the exact solutions for n = 1. The reason for this statement
is that the approxhate solutions are approximate only in that friction-
al heating is neglected. W stsrting a flow, the frictions. heating ef-
fects are not of primary importance until velocities of appreciable mag-
nitude me encountered. Therefore, it is felt that the larger velocity
flows, indicated by one of the two exact solutions, result &m a regen-
erative action of the frictional heating (see ref. 5] and that for a
given set of conditions the flow first established would be that with
the smaller velocities. Also, the changes in the character of the flow
on either side of the critical Ra in the experiments with unstable
horizontal fluid layers seem to lend further support to this contention.

Near the critical points themselves, however, the velocities are
always large; and, therefore,the tiictional heating may play an impor-
tant role in the transition from one type of flow to the other.

The velocity and temperature distributions for the case of no net
mass flow in the channel will.be affected by frictional heating in ex-
actly the same nmmner as was discussed above.

Both Side Walls hsul.e.ted

No frictional heating. - T!heeffect of heat sources in the fluid
for no frictional heating and with both side walls insulated cam be
studied by cmparing equation (23] with the solution for a = O as
given in reference 12. For example, in reference 12 it was shown that
for no heat sources flow does not ensue except for values of Ra that

satisfy the eq=tion cos Ral/4cosh Ral/4 = 1. However, when a # 0,
the present results indicate that the flow and heat trsasfer are much
the sue as for the linear surfbce temperature cases, except that the
critical values of Ra exe higher (the first is 3803.22). A repre-
sentative set of profiles for u=lO, K=lO, and Ra=10,74, and
84, with both walls insulated, is shown in figures 13 and 14. Again,
the different regimes on opposite sides of the critical Ra are
evident.
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Frictional.heating. - Solutions including the effects of frictional
heating obtained by means of the high-speed computing machine for

Ra = 74 and 84 are presented in figures 13 and 14. The initial values
of the exact solutions are ~resented in table III. These solutions co-
incide with those computed neglecting frictional heating, as is expected,
since the ratio K/Ra << 1. At the critical Rayleigh number (3803.22],
no solution could be obtained with frictional heating. This unsolvabil-
ity
and

lel

may be the result of the “choking
discussed in reference 1.

CONCLUDING

condition” pre~iously mentioned

An analysis of the flow sub~ect to a body force between two paral-
plane surfaces oriented parallel to the body force direction with

.

i,

—

heating from below and including the effects of-heat sources and fric-
tional heating shows that the basic physical chaz%cteristicsare similar
to flows in horizontal fluid layers with heating from below. The prime
characteristics in this respect are the existence of critical Rayleigh
numbers and the difference in the flow and heat transfer on opposite
sides of critical Rayleigh number.

Y

Detailed velocity and temperature distributions were .computedfor
linearly varying wall temperatures when the wall.temperatures were spec-
ified or when both walls were insulated, and also for the special case of

.

no net mass flow in the channel. The critical Rayleigh numbers are the
ssme for corresponding flows with and without heat sources for the spec-
ified wall”temperatures but are different when both walls are insulated.
Comparison of two identical configurations, in one of which, however,
the fluid ms heated from below, indicated that the flow and heat .trans-
fer can be appreciably affected by heating fr& below.

The effects of frictional heating were once again found to be im-
portant when K/Ra is of unit order and are also important in the vi-
cinity of the critical Ra. Two distinct solutions were obtained for “
each set of parametric values when frictional heating is considered.
The solutions obtained neglecting tiictional heating correspond to one
of the two sets of exact solutions except near the critical regf.ons.
The approximate solutions on one side of a critical region correspond
to one of the two distinct solution types obtained with frictional
heating but on the other side of the critical region correspond to the
other type exact solution. Hence, the a~roximate solutions indicate
completely altered regimes on opposite sides of the critical Rayleigh
number, analogous to the situation experimental.lyfound for horizontal
layers heated from below. However, close to the critical region the



.

.

NACA TN 3458 E

approxQnate solutions sre invaHd; and, hence, the question as to which
of the two exact solutions properly describes the flow in this region
can be answered perhaps by a more general analysis.

Letis Flight ~upulsion Laboratay
National Advisory C!cmmitteefor Aeronautics

Cleveland, Ohio, April 29, 1955

J

.
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APPENDIX - SYM80LS

The following symbols are used in this report:

longitudinal temperature gradient, ~T*/~X

parameter defined by eq. (4)

constants, i = 1, 2, 3, 4

specific heat at constant pressure

distance between parallel plates ..

negative of X-component of body force

modified Grashof number, ~fX(-A)d4/v2

constant, -Ral/2CK/64

per unit mass

NACA TN 3458

‘13fxd p2j32f$(-A)d5
frictional-heatingparsmeter, PrGr —

%=’~

integers

dimensionless mass flow

@w

wall-temperature parameter, 1 +
d

pressure

Prandtl number, CpV/X

heat due to heat sources

constant, Ra/16

modified Rayleigh number> & PrGr
I

temperature

velocity

dimensionless

iU3nensionless

velocity

velocity defined by eq. (6)

. .

.
.

.

.
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x
.

Y

Y

a

CN
u-i
s

e

v

P

T

TN 3458

longitudinal or axial (vertical) coordinate

transverse (horizontal) cwrdinate

dimensionless transverse coordinate, Y/a

dimensionless heat-source parameter, Qd/(-A}x

[%-!1alpvolumetric exyansion coefficient, p
P

ratio of specific heats

dimensionless coordinate, 2y - 1

temperature difference, T - ~ a.
Two K

coefficient of thermal conductivity

constant, aK/64

absolute viscosity coefficient

kinematic viscosity coefficient

density

dimensionless temperature difference, KB/(-A}d

17

Subscripts:

e extremum value

Wo conditions at y = O

WI conditions at y = 1
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.

TABLET. - EXAOTSOLl?l?IONSFOR WALLSAT 6AME TEMPERATURE

[D-1; K=1OJC--1J

(a)R. =lOpa. O

I Y I ~(1) I ~(1)‘ ~(1)” “(l)’”

(b)Ra-lO, aa10

*
~(1) ‘- u(l)” l“(l)’” I

Ti
10.02 -50.06
5.484 -40.07
1.986 -30.10
-.5240-20.09
-2.032 -10.05
-2.534 -.Cm519
-2.032 10,05
-.5246 20.09
1.983 30.10
5.493 40.06
9,998 50.06

0 10 -5.205 10.00 -0.2362
-4.202 10.0s1.742
-3.lm 10.312.452
-2.140 10.54Z.lm
-1.Oi’6 10.721.262
,O!xnolo10.79-.CQ2926
1.077 10.72-1.267
2.X41 10.54-2.194
3.163 10.30-2,457
4.202 10.08-1.748
S.m 9.997 .23~ L

00
.10 -.04033
.20 -.02488
.30 .01126
.40 .043CQ
.50 .05526
.60 .04301
.-10 .01128
.80 -.02486
.90 -.04032

1.CO -.144W1O“4

-0.6240
-.03760
.3061
.3729
.2367
.0C#48n
-.2366
-.3720
-.3082
.05746
.6237

.10 -.4704

.20 -.6399

.30-1.106

.40-1.267

.50-1.321

.m -1.267

.70-1.106
,60 -.8388
,90 -.4704

1.00 -.1966%lo-4

(c)RE=IMXI, CC=IO (d)Ra.1600, a.O

Y ~(1) “(1)!~ [ “(2) ~(1)” u(l)’” u

.
) o
.3.0”1.547
.Ztl2.985
,304.140
.404.864
.505.141
.604.885
.704,140
.602.966
.831..%8
L.0i3.6818x10-3

15.34
15.25
13.22
9.666
5.090
.S354KL0-3

-5.089
-9.665
13.22
.15.25
,15.34 1

10.00-227.2
-11.27-195.6
-28.72-152.0
-41.48-102.6
-49.18-51.42
-51.75 .0064
-49.18 51.44
-41.47m2.7
-28.71152.O
-11.26185.6
10.01227.3

) o

1
.Ei3m

.10-.03526 .04072

.20 -.W3506 .5521

.30 .05039 .6431

.40 .SL36 .4182

.50 .1.3S4 -.CKM572

.60 .IJ30 -.4256

.70 .03699 -.6461

.80-.C04927 -.5297

.80-.03622 -.03424
L.00-.232SCL0-3 .8075

10.C?3
6.745
3.017
-.7247
-3.538
-4.574
-3.505
-.6719
3.068
6.773
9.888

-31.05
-34.98
-38.72
-34.44
-20.33

.1771
20.61
34.54
36.59
34.65
50.63

(e)Ra. l&30,u.10

u(l)’

C1.96Cm
-.1666
.2844
.4236
.2603

-.o17u
-.3076
-.4341
-.2837
.1842

1.013

“(1)1?lu(l),,f

00
.I.o-.05429

10.Cx3 -39.61
6.342 -35.00
2.9(X) -33.56
-.2216 .27.&4
-2.449 -15.71
-3.219 .681J
-2.321 16.81.
-.01617 28.25
3.104 33.11
6.464 33.87
9.991 36.22u-.20-.04503

.30-.036514

.40 .03053

.50 .04432

.60 .02733

.70-.01168

.60-.0501-6

.80-.05745
1.00.2668x10-:

.

.
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TA3LE II. - EXACT SOLUl?IONSFORUNEQUALWIUL~TURE9

[n=0, K = 10, c = -1.1
(a)+ .lo, !z=o

o
.10
.20
.30
.4C
.50
.6C
.7C
.8C

~(2)

o
-.3015
-.5116
-.6389
-.6917
-.6793
-.6115
-.49s5
-.3514

.% -.ls13
1.00 .3222x10-3

U(2)‘
I

~(z)” ~(z),,,

3.500 10.Cx) -9.160
2.544 9.129 -8.4o2
1.673 8.296 -8.368
-.8858 7.441 -8.7S3
-.1866 6.532 -9.422
.4182 5.555 -10.11
.9221 4.5X5 -10.71

1.319 3.419 -1.1.14
1.605 2.292 -IJ..35
1.777 1.157 -11.33
1.’s37 .0?A28-11.09

(b)Ra = 10, u = 10

Y I U(2) IU(2)’

o
.10
.20
.30
.40
.50
.60
.70
.eC1
.80

1.00

)
.1571
.3566
.5507
.7021
.7846
.7827
.6916
.5177
.2778
.3038M.0-

1.172
1.872
2.039
1.7ea
1.204
.4195

-.4660
-1.344
-2.107
-2.644
-2.s47

U(2)” U(2)!11

T
10.00 -63.56
4.157 -53.24
-.6361 -42.58
-4.354 -31.75
-6.985 -20.89
-8.532 -10.06
-8.999 7.345
-8.384 11.57
-6.682 22.49
-3.s85 33.47
.009144 44.38

(c)Ra= 77.41,CL= o

Y u(l) U(2) ~(1)‘ ~(Q ‘ u(l)” U(2)” ~(1)’” U(2)!!!

i
o 0 0 -8.150 20.90 ,10.00 10.00 32.42 -297.1
.10 -.7594 2.092 -6.980 20.49 1.3.44 -17.24 35.18 -245.2
.20-1.3s4 4.017 -5.464 17.64 16.79 -38.75 30.71 -184.3
.30 -1.842 5.560 -3.647 12.95 19.39 -54.08 20.23 -122.9
.40 -2.107 6.567 -1.630 7.027 20.70 -63.43 5.551 -65.17
.50-2.166 6.%4 .4405 .447520.43 -67.23
.60-2.023

-11.05 -10.67
6.653 2.401 -6.23918.51 -65.59 -27.15 43.61

.70-1.695 5.710 4.092-U.49 15.09 -58.40 -40.55 101.1

.ecl-1.218 4.189 5.381-17.72 10.54 -45.22 -49.62 163.1

.80 -.6353 2.221 6.179-21.32 5.343 -2s.71 -53.45 227.0
1.00 .3330ulo-3.=38ti0-3I 6.446-22.65 .03330 -.02029 -51.88 285.0

(d)Ra = 97.41,u = O

Y
u(l) U(2) ~(1)‘ ~(z)‘ \ ~(i)” ~(2}” u(L)~~’U(2)’”

D o 0 -B .45 10.83 10.00 10.00 73.30-162.4
.10-1.282 1.107 -I-2.06 11.04 17.97 “-5.451 83.39-144.8
.20-2.384 2.160 -9.649 9.816 26.15 -18.64 77.55 -117.6
.30-3.226 3.031 -6.876 7.417 32.88 -28.78 57.14 -84.54
.40 -3.741 3.616 -3.340 4.176 ?37.20 -35.44 25.67 -48.39
.50 -3”.886 3.850 .44K .451e37.93 -38.42 -1.I..45-U-.(36
.60-3.655 3.702 4.122 -3.383 34.94 -37.65 -47.e3 26.37
.70-3.077 3.182 7.323 -6.955 28.59 -33.17 -77.46 63.01
.80-2.216 2.332 9.760 -9.898 “19.82 -25.12 -95.97 97.39
.80-1.157 1.235 11.25 -11.87 9.843 -13.s5

.156W104
-101.3 127.0

1.00 .2910ta0-3 11.73 -12.58 -.003217 .7480xlo-3 -93.57 148.3

I
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TABLE11.- Continued. EXACT SOLUTIONS FOR UIVEQUALW.LL TEME3RATURES *

~D=O, K=lO, C= -1.]

(e) Re=NO, a=O

Y I
“(l)

I
30
.101.013
.201.9s4
.302.709
.403.334
.503.554
.603.420
.702.941
.802.156
.901.141
L.tm .1563xM3_3

u(l)’ I u(l)” ~(1)’”

9.877
10.14
9.065
6.8s3
3.899
.4525

-3.105
-6.420
-9.149
.10.97
.11.63

(f) Ra=l17.41, a=O

Y ~(1) u(~) ‘

o 0 -2.040
.10-.1528 -1.007
.20 -.2017 .01490
.30-.1561 .8490
,40-.04417 1.317
.50 .09160. 1.319
.60 .2048 .8815
.70 .25SI. .1536
.60 .2336 -.6327
.90 .1379 -1.231

1.00 -.H36X1O-4 -1.455

I-().OO
-4.395
-16.77
-26.37
-32.73
-35.61
-34.95
-30.78
-23.27
-12.79
-.20CKWLU

-350.7
-135.4
-U_o .9

-m .33
-46.42
-EL.12

24.34
58.81
90.74
117.7
136.5

Y I u(l) IU(z) II u(l)’

o 0 0 -22.65
.10 -2.192 .5738 -20.93
.20-4.132 1.153 -17.60
.30-5.657 1.652 -12.65
.40-6.620 2.032 -6.427
.50-6.921 2.156 .4536
.60-6.533 2.090 7.217
.,70-5.507 1.2+35 U5.1O
.s0-3.963 1.326 17.50
.90-2.067 .7023 20.11

1.00 -.412cw0-3 .88(WJ0-4 20.83

(dR6=lC00, a.o

10.00
10.52
9.608
6.762
2.419
-2.330
-6.165
-7.995
-7.30s
-4.340
-.01511

“(2)’ ~(1)” U(2)I! “($)‘‘‘ U(2)”!

5.4043 10.CX2 1o.oo 129.2 -9e.41
5.916 24.95 .4285 164.3 -91.s0
5.520 41.69 -8.128 164.6 -78.27
4.345 56.70 -15.04 130.1 -59.19
2.582 66.74 -19.64 66.97 -36.31
.457% 69.56 -22.24 -11.89 -11.42

-1.781 64.40 -22.11 -89.65 13.81
-3.882 52.21 -19.52 -150.1 37.73
-5,608 35.34 -14.67 -182.1 58,59
-6.753 16.88 -7.962 -1s1.7 74.51
.7.159 - 002140 .007S80 -151.s 83.61

(h)Ra=lCOO, a-10

-.2448
-18.79
-37.35
-47.62
-45.07
-29.75

-5.961
19.29
38.47
45.74

.10

.20

.30

.40

.50

.60

.70

.s0

.80
1.00

u(l) u(l) ‘ u(l)~’ ~(1)’”

3
-.1806
-.27S3
-.2682
-.1815
-.05509
.06701
.1452
.1560
.09944
-.1579xlo-

-2.412
-1.394
-.367?
.533s

1.X57
1.317
1.057
.4663

-.250C
-.S40:
-1.077

laoo 2.010
UL36 2.002
9.927 -12.22
7.793 -30.29
4045 -43.20
-.4729 -45.02
-4529 -34.06
-8.941 -12.89
-6.855 12.78

X&El!&

d

.
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TARLE II. - Concluded. EXACT SOLU1’IONSFOR UNEQUALWAIL TEMPERATURES

[n= O, K=lO, C= -1.]

(i) Ra = 1358.55,u = o (3) Ra = 1558.55,a= O

y “(l) ~(1) ‘ “(1)‘ ‘ ~(1)’”

o 0 -4.660 10.00 109.4
.10-.3982 -3.135 20.04 82.18
.20-.6003 -.8246 25.00 1.2.ls
.30-.5592 1.598 22.0s -69.28
.40-.3035 3.346 11.87 -129.2
.50 .06772 3.241 -2.237 -144.4
.60 .4174 2.934 -15.31 -108.2
.70 .6188 .9675-22.79 -36.II
..93.5991 -1.349 -22.u 49.m
.80 .3650 -3.18s -13.52 117.5

1.03-.7953wo-4-3.S87 -.01161144.4

(k)Ra = 1600, a=0

Y “(2) “(2)‘ U(2)‘‘ “(2),,,

o 0 l@.@8 10.CK) -&54.1
.10 1.s00 15.79 -68.70 -673.5
.20 2.938 E.163 -117.1 -267.P
.30 2.9.44 -6.07.5-119.5 220.5
.40 1.795 -16.18 -65.74 627.3
.50 -.osa5 -20.20 -1.733 .904.9
.60-1.982 -16.44 74.70 670.5
.70-3.155 -6.210 123.0 2S0.4
.W1-3.140 6.530 123.1 -259.0
.% -1.834 16.78 75.13 -6S3.2

l.m -.73mxlo-5 20.64 -.01997-785.5

Y I ~(1)
o 0

.10 -6.~

.20 -9.s34

.30 -10.15

.40 -6.S37

.50 -1.309

.60 4.262

.70 7.&38

.S5 S.086

.90 5.084
1.00 -.1463x10-;I

“(l)’ “(l)”

-64.10 10.CXJ
-52.45 221.0
-22.0S 367.9
16.32 372.7
47.44 228.S
59.33 3.I.S4
48.52 -208.8
20.29 -336.3
-14.59-339.6
-43.41-217.3
-54.84 -.00S32C

(2) Ra = 1600, a - 10

1
“(l)’”

20s1
1959
839.9
-755.5
-2CK12
-2345
-17s9
-679.4
816.7
1779
2452

Y “(2) ~(z)‘ “(2)” U(2)’”

I o 18.81 10.CKY -866.8
.10 1.791 15.68 -69.51 -s77.1
.20 2.913 5.959 -117.9 -264.3
.X1 2.89CI -6.334-119.7 228.2
.40 1.721 -16.42 -75.12 635.7
.50 -.1783
.Sa-2.082
.70-3.244
.MJ-3.204
.80-1.967
..CKJ-.13SKIX1O-4

-20.34 -.3720
-16.42 76.3S
-6.030 1.24.4
6.S21 123.@
17.11 75.23
20.97‘ -.934OX1O-3

SIO.6
670.S
255.2
-266.5
-667.8
-781.5

(m) Ra - 1758.55,a = O

Y
*(1) U(2) Jl)’ ~(z)’ ‘ “(I)” U(2)” “(l)’” “(2)’”

o 0 0 3.210 163.9 10.00 ID.cx) -200.7 -9719
.10 .33sl 14.95 3.233 1.21.7 -9.026 -792.1 -168.8 -s0s0
.20 .5908 22.32 1.604 18.91 -22.14 -1196 -85.07-2029
.30 .6308 le.05 -.e53E -104.3 -25.15 -lixm 26.06 2012
.40 .4286 2.146 -3.062 -m6.P -17.41 -775.1 122.9 6559
.s0“ .05s36 -21.I.3 -4.oes -244.3 -2.2s 91.46 16S.7 1037s
.m -.3334 -43.32 -3.481 -1S1.8 X5.99 1145 145.1 8578
.70 -.5802 -!i4.42 -1.47e-29.4724.71 1777 61.6621s6
.m -.6084 -4e.51 1.124 143.5 25.45 1535 -47.51-651s
.w -.3W9 -27.78 3.266 256.9 15.87 690.6 -137.1-8983

-1.cn-.66S5x10-4.s3@wl-4 4.084 2P7.0 -.0S536 -.005280-L70.4-3740



TAME 111. - llUTIAL VALUES OF EXACT SOLUTIONS FOR BOTH WALLS

[ti = O.oq

(a) Ra = 2401

~(l)(o) U(2)(0) ~(l)’(o) ~(z)’(o) ~(1) ‘‘(())U(2)’’(O) u(l)’’’(o)U(2)’’’(0)

o 0 -0.@30035 166.0 -cl.0004495 -31i’2 o 0

(b) Ra =4096

Jqo) u(l) ‘ ‘(o)
u

(2),, (01 u(l)!!’(o) Jo’’(o)

II I II 1

-0.0CQ281\ 387.1 0.002085 0 0

$!
W
Cu

1 . ..

d.!+ ‘ .
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Figure 1. - Schematic sketch of configuration considered.
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